Growth of Seed Black Holes in the early Universe

KwangHo Park

Massimo Ricotti (UMD), Chris Reynolds (UMD), Priyamvada Natarajan (Yale), Tamara Bogdanović (GT), John Wise (GT)

The 7th KIAS workshop on Cosmology and Structure Formation 10/31/2016

We have a big problem...

- Quasars actively accreting BHs
- At z~7 (age ~ 700 Myr), 10⁸-10⁹ solar mass quasars are observed
- Red symbol : 13 billion solar mass at z=6.3
- Grey contour : low redshift SDSS quasars

Initial Mass of Seed Black Holes

- Seed BH Formation Scenarios (IMBH)
 - Pop III remnants : $\sim 10^2 M_{\odot}$
 - Stellar collapses : ~10⁴ M_{\odot}
 - Direct collapse : ~10⁵ M_{\odot}
- E.g., Pop III remnants
 - Initial mass should increase by 7 orders of mag
 - Should Accrete at Eddington rate for ~700 Myr
- Estimation of grow rate is important!

Volonteri 12 Natarajan 11 Quasars at high-z BH mass ~ 10⁹ M_{sun}

How do we estimate an accretion rate onto a BH?

Bondi Accretion (1952)

Ionization Fraction

Radiation-regulated accretion

Periodic oscillation of accretion rate due to accretion/feedback loop

Radiation-regulated accretion

accretion rate is suppressed by ~2 orders of mag

Accretion regimes Mode I, Mode II, super-Eddington

Hyper-accretion?

Stromgren radius vs. Bondi radius

n_H (cm)

Inayoshi, Haiman & Ostriker (2016) Sakurai et al. (2016)

Sugimura et al. (2016) : Anisotropic radiation Park et al. in prep

Bulge-driven Growth of Seed Black Holes

Only the gravitational potential of a BH has been considered so far....

Effective Bondi radius

increased Bondi radius due to bulge

 $r_{\mathrm{B,eff}}$

- Gas temperature
 - **BH** Mass

Effective Bondi Radius as a function of bulge-to-BH mass ratio 10⁶ M_{sun} 10^{4} 10^{4} $M_{ m BH} = 10^6 \, { m M}_{\odot}$ $T_{\infty} = 10^4 { m K}$ $M_{ m BH} \!=\! 10^6 \,$ M $_{\odot}$ $T_{\infty} = 10^6 { m K}$ $M_{\rm BH}\!=\!10^5~$ M $_{\odot}$ $M_{\rm BH} = 10^5 \, {\rm M}_{\odot}$ $M_{ m BH}\!=\!10^4~{ m M}_{\odot}$ $M_{ m BH}\!=\!10^3~{ m M}_{\odot}$ $M_{ m BH}\!=\!10^4~{ m M}_\odot$ 10³ 10^3 $M_{\rm BH} = 10^3 \, {\rm M}_{\odot}$ $M_{ m BH}\!=\!10^2~{ m M}_{\odot}$ $M_{\rm BH}\!=\!10^2~{\rm M}_{\odot}$ $r_{ m B,eff}/r_{ m B}$ 10² 10² 10^1 10^1 10⁰ 10^{0} $10^{\overline{0}}$ 10^1 10^{2} 10^{3} 10^{4} 10^{1} 10^{3} 10^{4} 10^{0} 10^{2} $\delta_{\rm bulge-BH} = M_{\rm bulge}/M_{\rm BH}$ $\delta_{\rm bulge-BH}\!=\!M_{\rm bulge}/M_{\rm BH}$ $\delta_{\rm crit} \sim \frac{10^6 \,\mathrm{M}_{\odot}}{M_{\rm BH}} \left(\frac{T_{\infty}}{10^4 \,\mathrm{K}}\right)^{3/2} \quad \Rightarrow \text{Critical BULGE MASS}$ 100 M_{sun}

Park, Ricotti, Natarajan, Bogdanovic & Wise (2016)

Accretion rate as a function of bulge-to-BH ratio with radiative feedback

Park et al. (2016)

10⁸ Super-Eddington, Weak Oscillation \mathbf{X} 10⁷ (Eddington-limited & Mild Oscillation) 10^{6} (~1% of Bondi accretion & Strong Oscillation) 10⁵ • $n_{\rm H}~({\rm cm^{-3}})$ $\dot{M}_{\rm BH} = \dot{M}_{\rm B} \left(\frac{r_{\rm B,eff}}{r_{\rm B}}\right)^{\beta}$ 10⁴ 10³ $\dot{M}_{\rm BH} \sim \dot{M}_{\rm B} \frac{M_{\rm bulge}}{M_{\rm bulge, crit}}$ 10^{2} 10^{1} 10^{6} 10^{2} 10^{3} 10^{4} 10⁵ Park et al. (2016) $M_{BH} (M_{\odot})$

Transition of Accretion Regimes

Growth of light vs. heavy seed black holes

Work in progress :

Semi-analytic extension

BH-to-bulge mass ratio evolution

BH-to-Bulge mass ratio in low mass system

Sérsic galaxies shows steeper relations between BH-bulge mass ratio

Semi-analytic modeling of BH-to-Bulge mass ratio

Semi-analytic modeling of Bulge-to-BH ratio

Growth rate of M_{BULGE} from Chen, Wise + (2014)

Summary

- Bulge-driven accretion
 - the massive bulge increase $r_{B,eff}$, but only when $\delta_{bulge-BH} > \delta_{crit}$.
 - A minimum bulge mass ~10⁶ M_{sun}
- Radiation-regulated accretion
 - Light seed (~100 Msun) : δ_{crit} ~ 10⁴
 - hard to grow
 - Heavy seeds (> 10⁵ Msun) : $\delta_{crit} \sim 1$
 - likely to grow coevally with bulge
- Work in progress :
 - semi-analytic extension

$$\delta_{\rm crit} \sim \frac{10^6 \,\,\mathrm{M_\odot}}{M_{\rm BH}} \left(\frac{T_\infty}{10^4 \,\,\mathrm{K}}\right)^{3/2}$$