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Observation 

Fan+ 01,03 
Willot+ 03,10 
Mortlock +11 
Wu+ 15 



We have a big problem… 

Wu et al. (2015) 

•  Quasars – actively 
accreting BHs 

•  At z~7 (age ~ 700 Myr),  
108-109 solar mass 
quasars are observed 

 
•   Red symbol : 13 billion 

solar mass at z=6.3 

•  Grey contour : low 
redshift SDSS quasars 



Initial Mass of Seed Black Holes 

•  Seed BH Formation Scenarios 
(IMBH) 
–  Pop III remnants : ~102 M¤  
–  Stellar collapses : ~104 M¤ 
–  Direct collapse :  ~105 M¤ 

•  E.g., Pop III remnants  
–  Initial mass should increase by 7 

orders of mag 
–  Should Accrete at Eddington rate for 

~700 Myr 

•  Estimation of grow rate is 
important! 

Volonteri 12 
Natarajan 11 



How do we estimate an accretion rate onto a BH? 
 

Bondi Accretion (1952)  
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Radiative Feedback by Black Holes 
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 Radiation-regulated accretion  
Periodic oscillation of accretion rate due to accretion/feedback loop 
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Burst 

HII region 
formation 

Gas 
depletion 

 Loss of 
Pressure 

Collapse of 
dense gas 

Park & Ricotti (2011, 2012) 



Radiation-regulated accretion  
accretion rate is suppressed by ~2 orders of mag 

Average 
accretion 

rate 

Period 
between 
bursts 

Accretion 
rate at 
peaks 
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Accretion regimes 
Mode I, Mode II, super-Eddington 

§  Different accretion regimes as 
a function of BH mass & Gas 
density 

–  Mode I : ~ 1 percent of Bondi 
rate, 5-6 orders of difference 
between max/min accretion 
rates 

–  Mode II : Eddington-limited, 1-2 
orders of mag difference 
between max/min accretion 
rates.  

–  super-Eddington : at high MBH and 
nH 

•  Low accretion rate : only ~1 
percent of Bondi rate 

Park & Ricotti (2012) 

Eddington-limited 



Hyper-accretion ? 
Stromgren radius vs. Bondi radius 

Inayoshi, Haiman & Ostriker (2016) 
Sakurai et al. (2016) 
 
Sugimura et al. (2016) : Anisotropic radiation 
Park et al. in prep 
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Figure 2. A schematic picture of a spherically symmetric ac-
cretion flow onto a massive BH at a hyper-Eddington accretion
rate (ṁ ≫ 1). There are three characteristic scales: the Bondi
radius (RB), photosphere (Rph), and the trapping radius (Rtr).
The dashed curve marks the boundary between the two regions
simulated separately: the outer region (10−3 RB ! r ! 10 RB)
and the inner region (0.5 Rtr ! r ! Rph ! 10−3 RB).

states only when ṁ = ṀB/ṀEdd " 3000. For the cases
with ṁ ≫ 1, we run several simulations by setting the gas
properties (i.e. the density, thermal energy density, and ve-
locity) at the inner-boundary of the outer-region simulation
to the outer-boundary conditions of the inner-region simu-
lation. The inner-region simulations are needed to confirm
whether the radiation affects the gas dynamics in the outer
region. Finally, we obtain self-consistent solutions of the ac-
cretion flow onto a BH with hyper-Eddington accretion rates
(ṁ " 3000) by combining the results of the inner and outer
regions. Note that since solutions with ṁ < 3000 do not ap-
proach a steady state due to radiative feedback in the outer
region, we neither conduct the inner-region simulations nor
obtain a fully self-consistent solution in this unstable regime.

2.2 Basic equations

The basic equations of hydrodynamics we solve are the fol-
lowing: the equation of continuity

∂ρ
∂t

+
1
r2

∂
∂r

(r2ρv) = 0, (6)

the equation of motion

ρ

(

∂v
∂t

+ v
∂v
∂r

)

= −∂p
∂r

− ρ
∂Φ
∂r

+ frad, (7)

where ρ is the gas density, v is the radial velocity (inflow;
v < 0), p is the gas pressure, the gravitational potential with
a general relativistic correction is set to Φ = −GMBH/(r −
RSch) (Paczyńsky & Wiita 1980), and frad is the outward
net radiation force in the radial direction.

We solve the energy equation including radiative cooling
and heating,

ρ

(

∂e
∂t

+ v
∂e
∂r

)

= −p
1
r2

∂
∂r

(r2v)− Λ+ Γ, (8)

where e is the specific energy (erg g−1). The equation of state
of the ideal gas is assumed as p = (γ− 1)ρe, where γ = 5/3.
The first term of the right-hand side is the compressional
heating term. The last two terms are radiative cooling and

heating, whose rates are Λ and Γ in units of erg s−1 cm−3.
The cooling rate is estimated as

Λ = ΛH + ΛHe + ΛHe+ + Λff , (9)

where each term corresponds to the cooling rate associated
with H, He, He+ atoms and free-free emission. For the outer-
region simulation, we assume optically thin cooling rates of
H atoms (Lyα, ΛH = Λthin

Lyα), He atoms (11S state) and He+

ions, and free-free transitions (Glover & Jappsen 2007). In
the inner region, since the gas is opaque to Lyα photons,
we solve the level population of H atoms (2S and 2P state)
including the Lyα trapping effect and estimate the cooling
rate of two-photon emission (Omukai 2001). In addition to
the H transitions, free-bound emission of H− (H + e− →
H−+γ) contributes as a cooling process. Thus, for the inner-
region simulation, ΛH = ΛLyα + Λ2ph + ΛH− . We show the
details of our treatment of the Lyα trapping, continuum
radiation cooling, and opacity in the Appendix.

We estimate the cooling rate by solving a chemical reac-
tion network of metal-free gas, which is composed of seven
species (H, H+, e−, H−, He, He+, and He++). Since the
reactions relevant to H− occur faster than the gas dynam-
ical timescale, the H− fraction is assumed to be in equi-
librium (see Appendix A3). The chemical reactions include
photoionization, collisional ionization, radiative recombina-
tion and collisional recombination of H, He and He+. Instead
of considering photoionization by diffuse photons, we adopt
the on-the-spot approximation where the case A radiative
recombination rate coefficient is replaced by that for case
B. To provide a stable, positive definite and first-order ac-
curate solution of the chemical network, we use a method
based on a semi-implicit formulation (Anninos et al. 1997).
The order of the updating is H, H+, He, He+, He++ and e−

(Whalen & Norman 2006). For the inner-region simulation,
inside the photosphere where all reactions are balanced, the
chemical abundances are determined by solving the Saha
equations instead of the non-equilibrium reaction network.

To ensure the accuracy of solutions of the hydrodynam-
ical equations coupled with radiative cooling/heating and
primordial chemistry, the time step must be shorter than
the Courant time (the Courant number is set to 0.5), cool-
ing/heating time tcool and chemical time tchem. The cool-
ing/heating time and chemical reaction time are given by

tcool = 0.1
ρe

|Λ− Γ|
, (10)

tchem = 0.01
xe + 0.001xH

ẋe
, (11)

where xe and xH are the electron and neutral fraction
(Whalen & Norman 2006, 2008). We set the time step to
the lowest value among these timescales.

To solve the above basic equations, we employ spher-
ical coordinates with a logarithmically-spaced grid in the
radial direction: the position of i-th grid is given by ri =
rmin+∆r0(ϵ

i−1 − 1)/(ϵ− 1) for i = [1, N ], where rmin is the
radius of the inner boundary, ∆r0 is the size of the inner-
most grid-cell, ϵ (= ∆ri+1/∆ri) is the size ratio between
consecutive grids, N is the number of grids, and the radius of
the outer boundary rmax is given by rN . In our simulations,
the size and layout of the coordinate grid is characterized by
the four parameters (rmin, rmax, ϵ, and N). The number of

c⃝ 0000 RAS, MNRAS 000, 000–000

Park, Ricotti, Di Matteo, & Reynolds (2014a) 
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Only the gravitational potential of a BH has been considered so far.... 
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FIG. 2.— Gravitational potential energy � with a bulge component as a function of radius for MBH = 102 M� (left) and MBH = 105 M� (right). The scale
radius a for a given bulge mass is adjusted so that the mass density is fixed within a. The radii are normalized by the BH mass and the gravitational constant
G = 4.3 ⇥ 10�3 pcM�1

� (km/s)2 is used for �. The horizontal dotted lines indicate the gas energy for T = 104 K and 106 K. The intersection of � and the
gas energy is analogous to Bondi radius within which the gravitational energy dominates over the gas energy. Note that the effective Bondi radius as a function
of bulge mass is different for different BH masses.

where �
B

is the dimensionless accretion rate as a function of
the equation of state (�). The factor �

B

ranges from e3/2/4
for an isothermal gas (� = 1) to 1/4 for an adiabatic gas (� =
5/3). The Eddington luminosity is defined as the maximum
accretion rate for a BH with MBH considering the radiation
from the BH and expressed as

LEdd = 4⇡GMBHmpc�
�1
T (2)

where mp is the proton mass, �T is the Thompson cross sec-
tion, and c is the speed of light. The regimes where the Bondi
accretion or Eddington-limited accretion occurs can be found
by comparing ṀB and LEdd/(⌘c2) where ⌘ is the radiative
efficiency. For example, assuming ⌘ = 0.1 and T1 = 104 K
two regimes are separated by MBHnH,1 = 4⇥106 M�cm�3

shown as a solid line at the bottom left corner of Figure 1.

2.2. Radiation-regulated accretion: Mode-I and II
When the radiative feedback from the BH is considered,

the accretion rate is suppressed and the accretion rate shows
a highly oscillatory behavior (Milosavljević et al. 2009; Li
2011; Park & Ricotti 2011, 2012). Park & Ricotti (2012)
also find that two distinct types of oscillations are expected
depending on MBH and nH,1, which are separated by a dot-
dashed line in Figure 1. In Mode I accretion, thermal pres-
sure gradient dominates over the gravity inside the Strömgren
sphere, and bursts of accretion are driven by the collapse of
the neutral gas when the gas inside the Strömgren sphere is
depleted. On the other hand, the oscillation of accretion rate
for Mode II is driven by the density wave from the ionization
front. The switch from Mode-I (strong) oscillation with an
accretion rate of ⇠ 1 percent of Bondi rate to Mode-II (mild)
oscillation with Eddington-limited rate occurs at

MBHn
cr
H,1 ⇠ 5⇥ 108 M� cm�3 (3)

where ncr
H,1 is the critical density for a given BH mass MBH.

The switch from Mode-I to Mode-II is found at higher MBH

and nH,1 compared to the conventional Eddington-limited
Bondi accretion criteria.

The accretion behavior is expected to make another tran-
sition at extremely high density nH,1 a given MBH, where
the oscillatory behavior weakens and the radiative feedback is
no longer able to regulate the gas accretion. This regime can
be considered as super-Eddington (e.g., Ohsuga & Mineshige
2011; Jiang et al. 2014), and the dotted line in Figure 1 is an
approximate estimate by assuming that the Bondi radius rB
is larger than the Strömgren radius (Park et al. 2014a). With
increasing density for a given BH mass (moving upward in
Figure 1) or increasing BH mass for a fixed gas density (mov-
ing to the right in Figure 1), the accretion is expected to make
a transition from the “feedback-dominated” to the “feeding-
dominated” regime (e.g., Pacucci et al. 2015).

2.3. Extended Bondi accretion with a bulge component
We treat the accretion onto a BH surrounded by bulge com-

ponent as an analogue to the Bondi accretion. The gravita-
tional potential of the bulge can be expressed analytically.
Therefore, the classical Bondi problem can be extended to
a generalized spherically symmetric accretion problem. We
adopt the Hernquist (1990) radial profile for the stellar mass
distribution, and the corresponding gravitational potential can
be described by the total bulge mass Mbulge and the scale
length a as

�bulge(r) = �GMbulge

r + a
(4)

where the enclosed mass within the radius r is m(r) =
Mbulger2(r + a)�2. The mean density within the scale ra-
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FIG. 3.— Effective Bondi radius as a function of bulge-to-BH mass ratio �bulge�BH for MBH = 102, 103, 104, 105, and 106 M�. Left panel shows rB,e↵

for cold gas with T1 = 104 K and right panel shows rB,e↵ for hot gas with T1 = 106 K.

dius a is then obtained as

⇢̄⇤ (r < a) =
3m(a)

4⇡a3
=

3Mbulge

16⇡a3
. (5)

For a given bulge mass, we keep the same density within
the scaling radius a by applying a = a0(Mbulge/M�)1/3.
The Milky Way is known to have Mbulge ⇠ 1 ⇥ 1010 M�
with the scale radius aMW ⇠ 800 pc and the DM halo mass
MDM ⇠ 1⇥1012 M� (Dwek et al. 1995; Widrow & Dubinski
2005; Kafle et al. 2014). The average stellar density within the
scale radius for MW is estimated as ⇠ 1M�pc�3. Here we
use a0 = 0.23 pc which corresponds to ⇢̄⇤ ⇠ 5.2M�pc�3.
The ⇢̄⇤ is obviously a free parameter, however note that a0 is
not very sensitive to ⇢̄⇤ since a0 / ⇢̄⇤�1/3 for a given bulge
mass.

We define the effective Bondi radius rB,e↵ as

GMBH

rB,e↵
+

GMbulge

rB,e↵ + a
⌘ c21 (6)

where the left side of the equation is the magnitude of the
gravitational potentials due to the BH and bulge component
together per unit mass whereas the right side represents the
thermal energy of the gas per unit mass. Figure 2 shows
the magnitude of the combined gravitational potential � con-
tributed by the BH and bulge component together. The hori-
zontal dotted lines indicate the specific thermal energy of cold
gas with T1=104 K and hot gas with T1 = 106 K when the
multi-phase model for star-forming gas is considered (McKee
& Ostriker 1977; Springel & Hernquist 2003; Pelupessy et al.
2007). Its intersection with � for different �bulge�BH is the
solution for the effective Bondi radius rB,e↵ . The solution for
the effective radius can be obtained as

rB,e↵

rB
= 0.5⇥


�bulge�BH + 1� a0 +

q
(a0 � 1� �bulge�BH)2 + 4a0

�

(7)

where the radii are normalized by the Bondi radius as
a0 ⌘ a/rB and �bulge�BH is defined as the bulge-to-BH
mass ratio Mbulge/MBH. The ratio rB,e↵/rB approaches
�bulge�BH when �bulge�BH � 1 while rB,e↵/rB = 1 when
�bulge�BH ⌧ 1. Note that the rB,e↵ as a function of
�bulge�BH is different for 102 M� (left panel) and 105 M�
(right panel) BHs.

Figure 3 shows the effective Bondi radius normalized by
the Bondi radius rB,e↵/rB for different BH masses 102, 103,
104, 105, and 106 M�. For cold gas with T1 = 104 K (left
panel), the rB,e↵/rB for the light BHs with MBH = 102 M�
does not increase significantly for �bulge�BH . 103 whereas
rB,e↵/rB for the massive IMBH with MBH & 105 M� mono-
tonically increases with �bulge�BH. It implies that the accre-
tion onto various BH masses is affected differently with the
same �bulge�BH since the gas within rB,e↵ is pulled to the BH
by the enhanced gravitational potential.

2.4. Critical bulge-to-BH ratio �crit
From Figure 3, it is possible to estimate a minimum bulge

mass above which the rB,e↵ is always linearly proportional
�bulge�BH. Here we define �crit above which the rB,e↵ shows
a linear relationship with �bulge�BH for a given BH mass. Fig-
ure 3 shows that �crit ⇠ 104 for 102 M�, �crit ⇠ 103 for
103 M�, and �crit ⇠ 102 for 104 M�. The critical bulge-to-
BH ratio for T1 = 104 K can be expressed for a given BH
mass approximately as

•  Bulge : Hernquist (1990) profile 
•  Gas temperature  
•  BH Mass 
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FIG. 3.— Effective Bondi radius as a function of bulge-to-BH mass ratio �bulge�BH for MBH = 102, 103, 104, 105, and 106 M�. Left panel shows rB,e↵

for cold gas with T1 = 104 K and right panel shows rB,e↵ for hot gas with T1 = 106 K.

dius a is then obtained as

⇢̄⇤ (r < a) =
3m(a)

4⇡a3
=

3Mbulge

16⇡a3
. (5)

For a given bulge mass, we keep the same density within
the scaling radius a by applying a = a0(Mbulge/M�)1/3.
The Milky Way is known to have Mbulge ⇠ 1 ⇥ 1010 M�
with the scale radius aMW ⇠ 800 pc and the DM halo mass
MDM ⇠ 1⇥1012 M� (Dwek et al. 1995; Widrow & Dubinski
2005; Kafle et al. 2014). The average stellar density within the
scale radius for MW is estimated as ⇠ 1M�pc�3. Here we
use a0 = 0.23 pc which corresponds to ⇢̄⇤ ⇠ 5.2M�pc�3.
The ⇢̄⇤ is obviously a free parameter, however note that a0 is
not very sensitive to ⇢̄⇤ since a0 / ⇢̄⇤�1/3 for a given bulge
mass.

We define the effective Bondi radius rB,e↵ as

GMBH

rB,e↵
+

GMbulge

rB,e↵ + a
⌘ c21 (6)

where the left side of the equation is the magnitude of the
gravitational potentials due to the BH and bulge component
together per unit mass whereas the right side represents the
thermal energy of the gas per unit mass. Figure 2 shows
the magnitude of the combined gravitational potential � con-
tributed by the BH and bulge component together. The hori-
zontal dotted lines indicate the specific thermal energy of cold
gas with T1=104 K and hot gas with T1 = 106 K when the
multi-phase model for star-forming gas is considered (McKee
& Ostriker 1977; Springel & Hernquist 2003; Pelupessy et al.
2007). Its intersection with � for different �bulge�BH is the
solution for the effective Bondi radius rB,e↵ . The solution for
the effective radius can be obtained as

rB,e↵

rB
= 0.5⇥


�bulge�BH + 1� a0 +

q
(a0 � 1� �bulge�BH)2 + 4a0

�

(7)

where the radii are normalized by the Bondi radius as
a0 ⌘ a/rB and �bulge�BH is defined as the bulge-to-BH
mass ratio Mbulge/MBH. The ratio rB,e↵/rB approaches
�bulge�BH when �bulge�BH � 1 while rB,e↵/rB = 1 when
�bulge�BH ⌧ 1. Note that the rB,e↵ as a function of
�bulge�BH is different for 102 M� (left panel) and 105 M�
(right panel) BHs.

Figure 3 shows the effective Bondi radius normalized by
the Bondi radius rB,e↵/rB for different BH masses 102, 103,
104, 105, and 106 M�. For cold gas with T1 = 104 K (left
panel), the rB,e↵/rB for the light BHs with MBH = 102 M�
does not increase significantly for �bulge�BH . 103 whereas
rB,e↵/rB for the massive IMBH with MBH & 105 M� mono-
tonically increases with �bulge�BH. It implies that the accre-
tion onto various BH masses is affected differently with the
same �bulge�BH since the gas within rB,e↵ is pulled to the BH
by the enhanced gravitational potential.

2.4. Critical bulge-to-BH ratio �crit
From Figure 3, it is possible to estimate a minimum bulge

mass above which the rB,e↵ is always linearly proportional
�bulge�BH. Here we define �crit above which the rB,e↵ shows
a linear relationship with �bulge�BH for a given BH mass. Fig-
ure 3 shows that �crit ⇠ 104 for 102 M�, �crit ⇠ 103 for
103 M�, and �crit ⇠ 102 for 104 M�. The critical bulge-to-
BH ratio for T1 = 104 K can be expressed for a given BH
mass approximately as
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FIG. 4.— Density (top), temperature (middle), and radial velocity (bot-
tom) as a function of radius for simulations without radiative feedback for
MBH = 106 M�, nH,1 = 10 cm�3, T1 = 106 K, and � = 1.2. All
the profiles shown are the steady states for �bulge�BH = 101 (dashed), 102

(dot-dashed) and 103 (dotted). Inflow velocity at large radius increases as
a function of �bulge�BH, however the velocity is at small radius is deter-
mined by the gravitational potential by the BH. The density and temperature
profiles do not change until �bulge�BH . 102, but shows an enhancement
at �bulge�BH = 103 which is consistent with the behavior of rB,e↵ for
T1 = 106 K in Figure 3.

�crit ⇠
106 M�
MBH

(8)

where we can infer that regardless of the BH mass, the rB,e↵

always increases when Mbulge & MBH�crit ⇠ 106 M�.
For hot gas with T1 = 106 K which we adopt as the typi-

cal temperature of the hot component of interstellar medium,
the rB,e↵/rB for various BH mass is shown in the right
panel of Figure 3. Note that the rB,e↵/rB for a given BH
mass for hot gas with Thot matches with the case for lower
BH mass MBH(Tcold/Thot)3/2. For example, the rB,e↵ for
MBH = 106 M� and T1 = 106 K matches with the one for
MBH = 103 M� and T1 = 104 K. This relation can be ex-
tracted from Equation (6) that �bulge�BH / T1M�2/3

BH when
a � rB,e↵ . Then, the �crit for hot gas is also expected to
scale with temperature as �crit(Thot/Tcold)3/2. Equation (8)

FIG. 5.— Average accretion rates normalized by Bondi rate for simulations
M6N1T4NR for cold gas (T1 = 104 K) shown as squares and M6N1T6NR
for hot gas (T1 = 106 K) shown as triangles (� = 1.2), circles (� =
4/3), and stars (� = 1.4). Average accretion rate increases as a function
of �bulge�BH when �bulge�BH & �crit. Note that �crit ⇠ 1 for cold gas
while �crit ⇠ 103 for hot gas (T1 = 106 K).

can then be generalized as

�crit ⇠
106 M�
MBH

✓
T1
104 K

◆3/2

. (9)

2.5. 1D Radiation-hydrodynamic Simulations
Radiation hydrodynamic simulations are a useful tool to

investigate the complex interplay between accretion flows
and radiative feedback in the modified Bondi problem with
a bulge component. In this section, we describe the numerical
procedures used in our study. We run a set of 1D radiation-
hydrodynamic simulations using ZEUS-MP (Stone & Nor-
man 1992; Hayes et al. 2006) with a radiative transfer equa-
tion solver (Ricotti et al. 2001). We use a spherical coordinate
system with a BH centered at r = 0 applying an operator-
splitting method between hydrodynamic and radiative trans-
fer calculations. At the minimum radius, we use the mass flux
(ṀBH) to define the BH luminosity as Lbh = ⌘ṀBHc2. We
apply a power-law spectrum F

⌫

/ ⌫�↵ where ↵ is the spec-
tral index for BH radiation in the energy range from 13.6 eV
to 100 keV. Our radiative transfer subroutine calculates photo-
heating, photo-ionization, radiation pressure, and gas cooling.
Compton heating is neglected in this study since the effect is
not significant when the incident spectrum is soft in high ac-
cretion rate regime (Park et al. 2014b).

The basic setup of the current work is similar to the previous
works (Park & Ricotti 2011, 2012), but we add a bulge com-
ponent to the gravitational potential (see section 2.3). Differ-
ent pairs of values for MBH and nH,1 are selected, but we
keep MBHnH,1 = 107 M�cm�3, so that the we can separate
the effect of the bulge on the growth history of different BH

106 Msun 

100 Msun 

Park, Ricotti, Natarajan, Bogdanovic & Wise (2016) 

à Critical BULGE MASS 



Accretion rate as a function of bulge-to-BH ratio 
with radiative feedback 

Park et al. (2016) 
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TABLE 1
SIMULATION PARAMETERS

MBH nH,1 T1
ID (M�) (cm�3) (K) � Rad Feedback �bulge�BH

M6N1T4NR 106 101 104 1.2 No 0, 101, 102, 103, 104
M6N1T6NR 106 101 106 1.2, 4/3, 1.4 No 0, 101, 102, 103, 104

M2N5 102 105 104 5/3 Yes 0, 30, 102, 3⇥ 102, 103, 3⇥ 103, 104
M4N3 104 103 104 5/3 Yes 0, 30, 102, 3⇥ 102, 103, 3⇥ 103

M6N1 106 101 104 5/3 Yes 0, 10, 20, 40, 102, 2⇥ 102, 4⇥ 102, 8⇥ 102, 103

FIG. 6.— Accretion rates as a function of time for various bulge-to-BH mass ratio �bulge�BH. Dashed lines show the mean accretion rates if the accretion is
oscillatory or asymptotic values otherwise. Top panels show the simulations for M2N5, middle panels show M4N3, and bottom panels show M6N1. For various
�bulge�BH, M2N5 dose not show significant change as a function of �bulge�BH. For M4N3, due to the increased effective Bondi radius rB,e↵ the accretion
rate increases as a function of �bulge�BH when �bulge�BH & 102. For M6N1, the accretion rate increases when �bulge�BH & 1.

seed masses. Simulations with the same value of MBHnH,1
show qualitatively similar results in terms of the accretion rate
normalized by Bondi rate and the period of oscillation when
normalized by MBH. Simulation parameters are listed in Ta-
ble 1. M2N5, M4N3, and M6N1 are simulations with radia-
tive feedback for BHs with 102, 104, and 106 M� and keep-
ing the same MBHnH,1. M6N1T4NR and M6N1T6NR are
simulations without radiative feedback for MBH = 106 M�,
10 cm�3, and T1 = 104 K and 106 K, respectively.

3. RESULTS
3.1. Extended Bondi Accretion without Radiative Feedback
Figure 4 shows the density (top), temperature (middle), and

radial velocity of the gas (bottom) as a function of radius
for simulations M6N1T6NR without radiative feedback with
� = 1.2. The simulations without radiative feedback reach
steady states and the different lines show �bulge�BH = 101

(dashed), 102 (dot-dashed) and 103 (dotted). The density and
temperature profiles do not change until �bulge�BH . 102,
but display an enhancement at �bulge�BH = 103, that is con-
sistent with the behavior of rB,e↵ for T1 = 106 K in Figure 3.

The change of accretion rate with the bulge-to-BH mass ra-
tio can be described as follows. Note that the density profile
is enhanced by the presence of the bulge component while the
velocity near the BH is not altered as shown in Figure 4. Be-
cause the central temperatures remain relatively unchanged,
the accretion rate is boosted by the enhanced densities around
the Bondi radius.

Assuming that the density enhancement is proportional to
(rB,e↵/rB)� , the accretion rate can be expressed as

ṀBH = ṀB

✓
rB,e↵

rB

◆
�

. (10)

Since rB,e↵ shows dependence on the BH mass as in Fig-
ure 3, the accretion rate also depends on the BH mass accord-
ingly. The accretion rate is not affected when �bulge�BH 
�crit where rB,e↵ ⇠ rB while it increases following Equa-
tion (10) when �bulge�BH � �crit. Figure 5 shows accretion
rates as a function of �bulge�BH for simulations without ra-
diative feedback listed as M6N1T4NR and M6N1T6NR in
Table 1. We confirm that the accretion rate remains the same
when �bulge�BH  �crit while it increases when �bulge�BH �Park et al. (2016) 
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TABLE 1
SIMULATION PARAMETERS

MBH nH,1 T1
ID (M�) (cm�3) (K) � Rad Feedback �bulge�BH

M6N1T4NR 106 101 104 1.2 No 0, 101, 102, 103, 104
M6N1T6NR 106 101 106 1.2, 4/3, 1.4 No 0, 101, 102, 103, 104

M2N5 102 105 104 5/3 Yes 0, 30, 102, 3⇥ 102, 103, 3⇥ 103, 104
M4N3 104 103 104 5/3 Yes 0, 30, 102, 3⇥ 102, 103, 3⇥ 103

M6N1 106 101 104 5/3 Yes 0, 10, 20, 40, 102, 2⇥ 102, 4⇥ 102, 8⇥ 102, 103

FIG. 6.— Accretion rates as a function of time for various bulge-to-BH mass ratio �bulge�BH. Dashed lines show the mean accretion rates if the accretion is
oscillatory or asymptotic values otherwise. Top panels show the simulations for M2N5, middle panels show M4N3, and bottom panels show M6N1. For various
�bulge�BH, M2N5 dose not show significant change as a function of �bulge�BH. For M4N3, due to the increased effective Bondi radius rB,e↵ the accretion
rate increases as a function of �bulge�BH when �bulge�BH & 102. For M6N1, the accretion rate increases when �bulge�BH & 1.

3.1. Generalized Bondi Accretion without Radiative
Feedback

Figure 4 shows the density (top), temperature (middle), and
radial velocity of the gas (bottom) as a function of radius
for simulations M6N1T6NR without radiative feedback with
� = 1.2 and MBH = 106 M� accreting from a gas with tem-
perature T = 106 K. The radial profiles have reached steady
state accretion and the different colored lines (see legend) re-
fer to different bulge masses: �bulge�BH = 101, 102 and 103

(i.e., Mbulge = 107, 108, 109 M�). The density and tempera-
ture profiles do not change until Mbulge . 108, but display
an enhancement at Mbulge = 109, that is consistent with
Mbulge,crit in Equation (9) for T1 = 106 K and with Fig-
ure 3.

The change of accretion rate observed when Mbulge >
Mbulge,crit for the simulation without radiation feedback ap-
pears to be dominated by an increase of the density produced
by the presence of the bulge component. While the velocity
near the BH is not altered as shown in Figure 4. The central
temperature rises mildly, reducing by the same magnitude the
Bondi radius. Therefore the dominant effect increasing the

accretion rate is the enhanced densities near the Bondi radius
of the BH.

We find that the accretion rate is ṀB if Mbulge 
Mbulge,crit and increases as

ṀBH ⇠ ṀB
Mbulge

Mbulge,crit
, (10)

for Mbulge > Mbulge,crit. Figure 5 shows accretion rates
as a function of the bulge mass for a set of simulations of
106 M� BHs without radiative feedback but with different �,
temperature of the gas, and density of the bulge (see simula-
tions M6N1T4NR and M6N1T6NR in Table 1). We find that
Equation (10) and Equation (9) describe accurately the accre-
tion rate from the simulations: the accretion rate remains con-
stant when Mbulge  Mbulge,crit (�bulge�BH  �crit) while
it increases linearly with Mbulge for Mbulge > Mbulge,crit

(�bulge�BH > �crit). As mentioned in section 2.3, simulations
with ⇢̄⇤ ⇠ 1M�pc�3) do not show a significant difference
since the bulge scale length a is not very sensitive to ⇢̄⇤.

3.2. Generalized Bondi Accretion with Radiative Feedback
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uncertainty on the Ks magnitudes measured by archangel, and
the uncertainty in converting this magnitude into a stellar mass.
The uncertainty in the magnitudes derived from the 2MASS
photometry are determined by the archangel pipeline, and are
typically ∼0.25 mag (or 0.1 dex). The uncertainty in the M/L
used to convert these magnitudes to stellar masses depends on
the uncertainty in the (B − Ks) color, and on the uncertain
star formation history of each object. Bell & de Jong (2001)
give M/LKs

for a range of star formation histories, allowing the
uncertainty in M/L due to the uncertain star formation history to
be estimated. For our sample, the uncertainty on M/LKs

(due to
both the uncertainty on the observed color and the uncertain star
formation history) is typically 0.17 dex. In elliptical galaxies
the typical total uncertainty on Msph,∗ for diskless systems is
0.2 dex.

In systems with a stellar disk there is the additional source
of uncertainty in converting the total magnitude into a spheroid
magnitude by applying both a dust correction and a correction
for the bulge-to-disk flux ratio. The uncertainty due to the dust
correction is estimated by Driver et al. (2008) to be 5% in both
the B- and K-bands. The uncertainty in the bulge-to-disk flux
ratio can be estimated from the data presented in Graham &
Worley (2008, their Table 4), and for the galaxies in our sample
is typically 0.3 dex. For systems with a disk this is the dominant
source of uncertainty and the total typical uncertainty in Msph,∗
is 0.36 dex.

3. ANALYSIS

In Figure 3 we show the spheroid stellar mass plotted against
the supermassive black hole mass for all galaxies in Table 1.
We separate galaxies into Sérsic (filled blue symbols) and core-
Sérsic (open red symbols). We fit separate linear regressions
to the Sérsic and core-Sérsic galaxy subsamples, using the
bces bisector regression of Akritas & Bershady (1996). This
technique takes into account the measurement uncertainties in
both black hole mass and stellar spheroid mass and accounts
for (though does not determine) the intrinsic scatter. For the
core-Sérsic galaxies the best-fitting symmetrical regression is

log
MBH

M⊙
= (0.97 ± 0.14) log

(
Msph,∗

3.0 × 1011 M⊙

)

+ (9.27 ± 0.09), (3)

and for Sérsic galaxies the best-fitting symmetrical regression
is

log
MBH

M⊙
= (2.22 ± 0.58) log

(
Msph,∗

3.0 × 1010 M⊙

)

+ (7.89 ± 0.18), (4)

with rms residuals of 0.47 and 0.90 dex respectively in the
log MBH direction. These linear relations are shown in Figure 3
as the solid red and blue lines for the core-Sérsic and Sérsic
galaxies, respectively. For comparison, the linear regression to
the combined sample is shown as the black dashed line, which
has a slope of 1.50 ± 0.12 (c.f. Laor 2001) and an rms residual
of 0.67 dex. The best-fitting regressions for the two different
types of galaxy have significantly different slopes that are not
consistent with each other given the confidence intervals on
the slopes. Sérsic galaxies follow an approximately quadratic
relation, whereas core-Sérsic galaxies follow an approximately
linear relation. This is in agreement with the analysis and

Figure 3. Supermassive black hole mass vs. spheroid stellar mass for core-Sérsic
(open red symbols) and Sérsic (filled blue symbols) galaxies. The best-fitting
linear relations to the two samples are, given by Equations (3) and (4) shown
as the solid lines. For comparison, the best-fitting linear regression for the full
sample is shown as the dashed line and is dependent on the sample selection.
A representative error bar is shown in the upper left corner.
(A color version of this figure is available in the online journal.)

conclusions of Graham (2012a) who studied the MBH–Msph,dyn
relation.

The bend or break in the MBH–Msph,∗ distribution occurs
where the core-Sérsic and Sérsic relations overlap. This is at a
spheroid stellar mass Msph,∗ ∼ 3 × 1010 M⊙, corresponding to
a black hole mass MBH ∼ 2 × 108 M⊙. The significance of this
“break mass” will be discussed in Section 4. Here we simply
note that very few Sérsic galaxies have MBH greater than this
break mass; equally no core-Sérsic galaxy has a black hole mass
below this value.

Park et al. (2012) examined the effect of using different linear
regression techniques on the MBH–σ relation but their results
are applicable to supermassive black hole scaling relations in
general. They reported that three popular regression techniques,
bces (as used in this work), a modified version of fitexy (Press
et al. 1992; Tremaine et al. 2002), and a Bayesian technique
developed by Kelly (2007), linmix_err, return consistent re-
sults. However, if the measurement uncertainties are larger than
∼15% in the ordinate when using the “forward” regression,
they find that the bces routine may be biased to higher slopes
(as was noted by Tremaine et al. 2002). Because of the signif-
icant uncertainties on many of our low-mass spheroid stellar
masses (due to our statistical bulge-disk separation), we rede-
termined our core-Sérsic and Sérsic relations using the modified
fitexy and the linmix_err linear regression methods to test the
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conclusions of Graham (2012a) who studied the MBH–Msph,dyn
relation.

The bend or break in the MBH–Msph,∗ distribution occurs
where the core-Sérsic and Sérsic relations overlap. This is at a
spheroid stellar mass Msph,∗ ∼ 3 × 1010 M⊙, corresponding to
a black hole mass MBH ∼ 2 × 108 M⊙. The significance of this
“break mass” will be discussed in Section 4. Here we simply
note that very few Sérsic galaxies have MBH greater than this
break mass; equally no core-Sérsic galaxy has a black hole mass
below this value.

Park et al. (2012) examined the effect of using different linear
regression techniques on the MBH–σ relation but their results
are applicable to supermassive black hole scaling relations in
general. They reported that three popular regression techniques,
bces (as used in this work), a modified version of fitexy (Press
et al. 1992; Tremaine et al. 2002), and a Bayesian technique
developed by Kelly (2007), linmix_err, return consistent re-
sults. However, if the measurement uncertainties are larger than
∼15% in the ordinate when using the “forward” regression,
they find that the bces routine may be biased to higher slopes
(as was noted by Tremaine et al. 2002). Because of the signif-
icant uncertainties on many of our low-mass spheroid stellar
masses (due to our statistical bulge-disk separation), we rede-
termined our core-Sérsic and Sérsic relations using the modified
fitexy and the linmix_err linear regression methods to test the
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Figure 2. Mbh vs. Msph,∗, in units of solar masses, for the sample of 77 galaxies
with direct Mbh measurements from Scott et al. (2013), plus the (147-8 =
139) low-mass AGN sample from Jiang et al. (2011a; small dots) and the 35
additional galaxies (cross-hairs) listed in Table 2. The Sérsic galaxies from Scott
et al. (2013) are shown by the filled blue circles, with the core–Sérsic galaxies
denoted by open red circles (slightly updated here according to Table 1). The
near-linear and near-quadratic scaling relations from Scott et al. (2013) are
shown as the red (solid and dashed) and blue (solid) line for core–Sérsic and
Sérsic galaxies, respectively. The deviant spheroid with the lowest mass is SDSS
0840+4123.

the z = 0.614 galaxy 1253+4627 had an unknown K correction,
and five had far too red g − i colors around 1.4 ± 0.04
(0347+005, 0927+0843, 1027+4850, 1153+5256, 1621+3436).
The resulting masses for the remaining 139 bulges are given in
Table 3.

3. RESULTS

In Figure 2, we expand upon Figure 3 from Scott et al.
(2013), showing the Mbh–Msph,∗ distribution for 77 galaxies
with directly measured black hole masses divided into Sérsic
galaxies (blue filled circles) and core–Sérsic galaxies (red open
circles). The best-fitting log-linear relations from Scott et al.
(2013) for these two sub-samples are shown, with the ex-
trapolation of the near-linear core–Sérsic relation (slope =
0.97 ± 0.14) to low masses shown with the dashed line
to highlight the difference with the steeper Sérsic relation
(slope = 2.22 ± 0.58). By presenting spheroid masses for an
additional 35 + 139 AGN with indirect black hole mass deter-
minations and combining data from several papers, it becomes
apparent that these additional galaxies are not randomly dis-
tributed below the linear Mbh–Msph,∗ relation for the core–Sérsic
galaxies, but instead appear to somewhat overlap with the Sérsic
sequence of galaxies that have Sérsic indices ranging from less
than one in small spheroids to up to three to four in the larger
spheroids.

Claims for increased scatter at the low-mass end of the
Mbh–Msph,∗ relation, or even a breakdown in this relation, may
be misleading if one overlooks that the slope of these relations
steepen here. If sampling too small a range in spheroid mass
or black hole mass, one may of course also fail to recover the
Mbh–Msph,∗ relation. Due to the small range in black hole mass

in the sample from Jiang et al. (2011a), of their 139 galaxies that
we could use, a bisector regression yields a slope consistent with
zero: 0.12 ± 0.25. However, we can use this large homogeneous
data sample to investigate the scatter in the log Msph,∗ direction.

The median horizontal offset of the Jiang et al. (2011a) data
from the near-quadratic Mbh–Msph,∗ relation given by Scott et al.
(2013) is just 0.19 dex, and an offset of zero is obtained by
adjusting the slope of that relation within the 1σ uncertainty
quoted by Scott et al. (2013). By contrast, the median horizontal
offset about the near-linear Mbh–Msph,∗ relation from McConnell
& Ma (2013) is 1.63 dex, i.e., a factor in excess of 40.

If the scatter in the Mbh–Msph,∗ diagram remains constant in
the horizontal (log Msph) direction, then the scatter in the vertical
(log Mbh) direction will naturally increase where the relation
steepens. Looking at the Jiang et al. (2011a) data in Figure 2,
relative to the Sérsic relation (after accounting for the mean
0.19 dex displacement of the Jiang et al. (2011a) data to higher
spheroid masses), 68% of their data (i.e., ±34%) is contained
within 0.83 dex in the horizontal direction. That is, their galaxy
sample has a 1σ scatter of ∼0.42 dex in the horizontal direction
about the near-quadratic Sérsic Mbh–Msph,∗ relation. This level
of scatter is comparable with the level of scatter commonly
reported in the vertical direction around the near-linear segment
of the Mbh–Lsph,∗ and Mbh–Msph,∗ relation defined by the bright
spheroids. The scatter in spheroid mass at a given black hole
mass therefore appears to be similar at the low- and high-mass
end of the Mbh–Msph,∗ diagram. At the low-mass end, for a
slope of 2, the 1σ scatter should thus be 0.83 dex in the vertical
direction. If, at these low masses, the bulk of the data reside
within ±2σ of the near-quadratic relation, then the observed
range in black hole mass at a given spheroid mass should be
3.32 dex. It is therefore not surprising that studies with a limited
range in spheroid mass (as opposed to black hole mass) may
also miss detecting the relation.

In spite of the many sources of scatter that our remaining
heterogeneous AGN sample (Table 2) may contain, these AGNs
appear to follow a sequence whose slope is steeper than 0.97
and less than 2.22. However, given the previously mentioned
possibility that we may have overestimated the mass-to-light
ratios and thus the bulge masses of some of our AGN hosts, we
feel that it would be premature to place too much confidence in a
line fit to this data. Our distribution of spheroid stellar masses for
the 139 AGNs from Jiang et al. (2011a) does, however, appear
broadly consistent with the distribution of dynamical (5σ 2 Re)
masses shown for some of these galaxies by Jiang et al. (2011a,
their Figure 1(b)). This lends support to both our and their
mass estimates. Unfortunately, we do not have dynamical mass
estimates to compare with for the other AGN samples that are
marked with a different symbol in Figure 2. Having noted our
concerns, applying a bisector regression to these 35 AGNs, they
are found to have a slope of 1.56 ± 0.10 in Figure 2 (obtained
using a simple factor of two error for all spheroid and black
hole masses). This slope is shallower than 2.22, but it does have
overlapping 1σ error bars with the measurement 2.22 ± 0.58.
In summary, the AGNs are not randomly offset; they follow a
steeper relation than the near-linear (i.e., slope close to one)
relation defined by the massive systems.

4. DISCUSSION

The magnitude or mass marking the divide between the Sérsic
and the core–Sérsic galaxies—which experienced different
evolutionary paths—is fairly broad. In Figure 2, this transition
occurs over the mass range Msph,∗ = 3 × 1010 M⊙ to 1011 M⊙.
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Summary 

•  Bulge-driven accretion  
–  the massive bulge increase rB,eff, but only when δbulge-BH 

> δcrit.  
–  A minimum bulge mass ~106 Msun 

•  Radiation-regulated accretion 
–   Light seed (~100 Msun) : δcrit  ~ 104 

•  hard to grow 

–  Heavy seeds (> 105 Msun) : δcrit ~ 1 
•  likely to grow coevally with bulge  

•  Work in progress :  
–  semi-analytic extension  
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FIG. 4.— Density (top), temperature (middle), and radial velocity (bot-
tom) as a function of radius for simulations without radiative feedback for
MBH = 106 M�, nH,1 = 10 cm�3, T1 = 106 K, and � = 1.2. All
the profiles shown are the steady states for �bulge�BH = 101 (dashed), 102

(dot-dashed) and 103 (dotted). Inflow velocity at large radius increases as
a function of �bulge�BH, however the velocity is at small radius is deter-
mined by the gravitational potential by the BH. The density and temperature
profiles do not change until �bulge�BH . 102, but shows an enhancement
at �bulge�BH = 103 which is consistent with the behavior of rB,e↵ for
T1 = 106 K in Figure 3.

�crit ⇠
106 M�
MBH

(8)

where we can infer that regardless of the BH mass, the rB,e↵

always increases when Mbulge & MBH�crit ⇠ 106 M�.
For hot gas with T1 = 106 K which we adopt as the typi-

cal temperature of the hot component of interstellar medium,
the rB,e↵/rB for various BH mass is shown in the right
panel of Figure 3. Note that the rB,e↵/rB for a given BH
mass for hot gas with Thot matches with the case for lower
BH mass MBH(Tcold/Thot)3/2. For example, the rB,e↵ for
MBH = 106 M� and T1 = 106 K matches with the one for
MBH = 103 M� and T1 = 104 K. This relation can be ex-
tracted from Equation (6) that �bulge�BH / T1M�2/3

BH when
a � rB,e↵ . Then, the �crit for hot gas is also expected to
scale with temperature as �crit(Thot/Tcold)3/2. Equation (8)

FIG. 5.— Average accretion rates normalized by Bondi rate for simulations
M6N1T4NR for cold gas (T1 = 104 K) shown as squares and M6N1T6NR
for hot gas (T1 = 106 K) shown as triangles (� = 1.2), circles (� =
4/3), and stars (� = 1.4). Average accretion rate increases as a function
of �bulge�BH when �bulge�BH & �crit. Note that �crit ⇠ 1 for cold gas
while �crit ⇠ 103 for hot gas (T1 = 106 K).

can then be generalized as

�crit ⇠
106 M�
MBH

✓
T1
104 K

◆3/2

. (9)

2.5. 1D Radiation-hydrodynamic Simulations
Radiation hydrodynamic simulations are a useful tool to

investigate the complex interplay between accretion flows
and radiative feedback in the modified Bondi problem with
a bulge component. In this section, we describe the numerical
procedures used in our study. We run a set of 1D radiation-
hydrodynamic simulations using ZEUS-MP (Stone & Nor-
man 1992; Hayes et al. 2006) with a radiative transfer equa-
tion solver (Ricotti et al. 2001). We use a spherical coordinate
system with a BH centered at r = 0 applying an operator-
splitting method between hydrodynamic and radiative trans-
fer calculations. At the minimum radius, we use the mass flux
(ṀBH) to define the BH luminosity as Lbh = ⌘ṀBHc2. We
apply a power-law spectrum F

⌫

/ ⌫�↵ where ↵ is the spec-
tral index for BH radiation in the energy range from 13.6 eV
to 100 keV. Our radiative transfer subroutine calculates photo-
heating, photo-ionization, radiation pressure, and gas cooling.
Compton heating is neglected in this study since the effect is
not significant when the incident spectrum is soft in high ac-
cretion rate regime (Park et al. 2014b).

The basic setup of the current work is similar to the previous
works (Park & Ricotti 2011, 2012), but we add a bulge com-
ponent to the gravitational potential (see section 2.3). Differ-
ent pairs of values for MBH and nH,1 are selected, but we
keep MBHnH,1 = 107 M�cm�3, so that the we can separate
the effect of the bulge on the growth history of different BH
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